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Definition 1.1 (Shannon Entropy)

Let X be a discrete random variable, and let PX denote its probability
mass function (PMF) defined on a set X . Then, the Shannon entropy of
X is given by

H(X) = −
∑
x∈X

PX(x) logPX(x). (1.1)

Throughout, logarithms are on base 2.

Definition 1.2 (Conditional Entropy)

Let X,Y be discrete random variables, and let PX,Y denote its joint PMF
defined on a set X × Y. Then, the conditional entropy of X given Y is
defined as

H(X|Y ) = Ey∼PY

[
H(X|Y = y)] (1.2)

= −
∑

(x,y)∈X×Y

PX,Y (x, y) logPX|Y (x|y). (1.3)
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Some Useful Properties of the Shannon Entropy

Maximality under the uniform distribution: If |X | < ∞, then

0 ≤ H(X) ≤ log |X |. (1.4)

If X is uniform on its range (getting each value with probability 1
|X |),

then the upper bound in (1.4) is attained, i.e., H(X) = log |X |.
Subadditivity:

H(X1, . . . , Xn) ≤
n∑

j=1

H(Xj), (1.5)

with equality in (1.5) ⇐⇒ X1, . . . , Xn are statistically independent.

Chain rule:

H(X1, . . . , Xn) =

n∑
j=1

H(Xj |X1, . . . , Xj−1). (1.6)

Concavity: entropy is a concave functional.
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Some Useful Properties of the Shannon Entropy (cont.)

Massey’s inequality: Let X be an integer-valued random variable with
finite variance σ2

X < ∞. Then,

H(X) ≤ 1
2 log

(
2πe (σ2

X + 1
12)
)
. (1.7)
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Binary Entropy Function

Definition 1.3

The binary entropy function is the function Hb : [0, 1] → [0, 1] given by

Hb(p) = −p log p− (1− p) log(1− p), p ∈ [0, 1], (1.8)

with the convention that 0 log 0 = 0. Equivalently, Hb(p) is the entropy of
a Bernoulli random variable with probabilities p and 1− p.

Figure 1: A plot of Hb(p) for p ∈ [0, 1].
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Coin-Weighing Problem
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The Coin-Weighing Problem (Erdós & Rényi, 1963)

We are given n coins, which look quite alike but some are counterfeit.

Weights of the authentic & counterfeit coins are known, and different.

A scale enables to weigh any number of coins together.

Each weighing → no. of counterfeit coins within the weighed coins.
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The Coin-Weighing Problem (Erdós & Rényi, 1963)

We are given n coins, which look quite alike but some are counterfeit.

Weights of the authentic & counterfeit coins are known, and different.

A scale enables to weigh any number of coins together.

Each weighing → no. of counterfeit coins within the weighed coins.

Question

How many weighings are needed such that, for any constellation of the
counterfeit coins among the n coins, one can decide with absolute

certainty which of the coins are counterfeit ?

Remark: the sequence of weighings needs to be announced in advance,
and a current weighing should not depend on earlier weighings.
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The Coin-Weighing Problem

Label the coins by the elements of the set [n] ≜ {1, . . . , n}.
Denote the minimal number of weighings by ℓ(n).

Let S1, . . . ,Sℓ ⊆ [n]. Suppose that the coins whose labels are the
elements of Si are weighed together at the i-th weighing for i ∈ [ℓ].
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The Coin-Weighing Problem

Label the coins by the elements of the set [n] ≜ {1, . . . , n}.
Denote the minimal number of weighings by ℓ(n).

Let S1, . . . ,Sℓ ⊆ [n]. Suppose that the coins whose labels are the
elements of Si are weighed together at the i-th weighing for i ∈ [ℓ].

Definition: Distinguishing Family

Let Ω be a finite set.

A collection {S1, . . . ,Sℓ} of subsets of Ω is called a distinguishing
family of Ω if every subset T ⊆ Ω is uniquely determined by the
cardinalities of the intersections Si ∩ T with i ∈ [ℓ].
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The Coin-Weighing Problem

Label the coins by the elements of the set [n] ≜ {1, . . . , n}.
Denote the minimal number of weighings by ℓ(n).

Let S1, . . . ,Sℓ ⊆ [n]. Suppose that the coins whose labels are the
elements of Si are weighed together at the i-th weighing for i ∈ [ℓ].

Definition: Distinguishing Family

Let Ω be a finite set.

A collection {S1, . . . ,Sℓ} of subsets of Ω is called a distinguishing
family of Ω if every subset T ⊆ Ω is uniquely determined by the
cardinalities of the intersections Si ∩ T with i ∈ [ℓ].

{S1, . . . ,Sℓ} is a distinguishing family of subsets of a finite set Ω
⇕

for every distinct A,B ⊆ Ω, ∃ i ∈ [ℓ] such that |A ∩ Si| ≠ |B ∩ Si|.
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The Coin-Weighing Problem

Proposition

A necessary and sufficient condition for detecting the counterfeit coins, for
any possible constellation among the n coins, is that the collection
{S1, . . . ,Sℓ} is a distinguishing family of [n].
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The Coin-Weighing Problem

Proposition

A necessary and sufficient condition for detecting the counterfeit coins, for
any possible constellation among the n coins, is that the collection
{S1, . . . ,Sℓ} is a distinguishing family of [n].

Example

Label 4 coins by the elements {1, 2, 3, 4} := [4], and let

S1 = {1, 2, 3}, S2 = {1, 3, 4}, S3 = {1, 2, 4}.
Let f1, f2 and f3 be, respectively, the number of counterfeit coins
among those in S1,S2,S3.

Denote by ′−′ an authentic coin, and by ′+′ a counterfeit coin.
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The Coin-Weighing Problem

Proposition

A necessary and sufficient condition for detecting the counterfeit coins, for
any possible constellation among the n coins, is that the collection
{S1, . . . ,Sℓ} is a distinguishing family of [n].

Example

Label 4 coins by the elements {1, 2, 3, 4} := [4], and let

S1 = {1, 2, 3}, S2 = {1, 3, 4}, S3 = {1, 2, 4}.
Let f1, f2 and f3 be, respectively, the number of counterfeit coins
among those in S1,S2,S3.

Denote by ′−′ an authentic coin, and by ′+′ a counterfeit coin.

The table on next slide shows that {S1,S2,S3} is a distinguishing
family of [4]. This is the minimal number of weighings, ℓ(4) = 3.
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The Coin-Weighing Problem

f1 f2 f3 1 2 3 4
0 0 0 – – – –
1 1 1 + – – –
1 0 1 – + – –
1 1 0 – – + –
0 1 1 – – – +
2 1 2 + + – –
2 2 1 + – + –
1 2 2 + – – +
2 1 1 – + + –
1 1 2 – + – +
1 2 1 – – + +
3 2 2 + + + –
2 2 3 + + – +
2 3 2 + – + +
2 2 2 – + + +
3 3 3 + + + +
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The Coin-Weighing Problem

IT Lower Bound (Erdós & Rényi, ’63 & Improvement: Pippenger, ’77)

ℓ(n) ≥ 2n

log2 n

(
1 +O

( 1

log n

))
.
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IT Lower Bound (Erdós & Rényi, ’63 & Improvement: Pippenger, ’77)

ℓ(n) ≥ 2n

log2 n

(
1 +O

( 1

log n

))
.

Combinatorial Upper Bound (Lindenström ’65, Cantor & Mills ’66)

ℓ(n) ≤ 2n

log2 n

(
1 +O

(
log logn

log n
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.
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The Coin-Weighing Problem

IT Lower Bound (Erdós & Rényi, ’63 & Improvement: Pippenger, ’77)

ℓ(n) ≥ 2n

log2 n

(
1 +O

( 1

log n

))
.

Combinatorial Upper Bound (Lindenström ’65, Cantor & Mills ’66)

ℓ(n) ≤ 2n

log2 n

(
1 +O

(
log logn

log n

))
.

An instance of the power of the Shannon entropy in combinatorics !
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Proof of IT Lower Bound

Enumerate all subsets of [n] by indices in [2n].
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Proof of IT Lower Bound

Enumerate all subsets of [n] by indices in [2n].

Let A ⊆ [n] be selected uniformly at random, and let X ∈ [2n] be the
index that is assigned to the random subset A.
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Proof of IT Lower Bound

Enumerate all subsets of [n] by indices in [2n].

Let A ⊆ [n] be selected uniformly at random, and let X ∈ [2n] be the
index that is assigned to the random subset A.

A ↔ X =⇒ H(X) = log2(2
n) = n bits.
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Proof of IT Lower Bound

Enumerate all subsets of [n] by indices in [2n].

Let A ⊆ [n] be selected uniformly at random, and let X ∈ [2n] be the
index that is assigned to the random subset A.

A ↔ X =⇒ H(X) = log2(2
n) = n bits.

{Si}ℓ(n)i=1 is a distinguishing family of [n]

⇕

X ↔ (|A ∩ S1|, . . . , |A ∩ Sℓ(n)|).
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Proof of IT Lower Bound

Enumerate all subsets of [n] by indices in [2n].

Let A ⊆ [n] be selected uniformly at random, and let X ∈ [2n] be the
index that is assigned to the random subset A.

A ↔ X =⇒ H(X) = log2(2
n) = n bits.

{Si}ℓ(n)i=1 is a distinguishing family of [n]

⇕

X ↔ (|A ∩ S1|, . . . , |A ∩ Sℓ(n)|).

H(X) = H(|A ∩ S1|, . . . , |A ∩ Sℓ(n)|)

≤
ℓ(n)∑
i=1

H(|A ∩ Si|).

I. Sason, Technion, Israel Hebrew University of Jerusalem December 16, 2024 13 / 64



Proof of IT Lower Bound

The subset A is selected uniformly at random from [n].

⇕

|A ∩ Si| ∼ Bin(|Si|, 12) is binomially distributed for i ∈ [ℓ(n)].
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Proof of IT Lower Bound

The subset A is selected uniformly at random from [n].

⇕

|A ∩ Si| ∼ Bin(|Si|, 12) is binomially distributed for i ∈ [ℓ(n)].

Let Yi ∼ Bin(|Si|, 12) for all i ∈ [ℓ(n)]. Then,

H(|A ∩ Si|) = H(Yi).
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Proof of IT Lower Bound

The subset A is selected uniformly at random from [n].

⇕

|A ∩ Si| ∼ Bin(|Si|, 12) is binomially distributed for i ∈ [ℓ(n)].

Let Yi ∼ Bin(|Si|, 12) for all i ∈ [ℓ(n)]. Then,

H(|A ∩ Si|) = H(Yi).

By Massey’s inequality (1.7) for the entropy of a discrete random
variable with finite variance, for all i ∈ [ℓ(n)],

H(Yi) ≤ 1
2 log2

(
2πe (σ2

Yi
+ 1

12)
)

= 1
2 log2

(
2πe (14 |Si|+ 1

12)
)

(σ2
Yi

= 1
4 |Si|)

≤ 1
2 log2

(
2πe (n4 + 1

12)
)

(|Si| ≤ n).
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Proof of IT Lower Bound

To conclude,

n = H(X)

≤
ℓ(n)∑
i=1

H(|A ∩ Si|)

≤ ℓ(n) H(Yn)

≤ 1
2ℓ(n) log2

(
1
2πe (n+ 1

3)
)
,

from which the information-theoretic lower bound on ℓ(n) follows.
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Proof of IT Lower Bound

To conclude,

n = H(X)

≤
ℓ(n)∑
i=1

H(|A ∩ Si|)

≤ ℓ(n) H(Yn)

≤ 1
2ℓ(n) log2

(
1
2πe (n+ 1

3)
)
,

from which the information-theoretic lower bound on ℓ(n) follows.

Information-Theoretic Lower Bound (Explicit for Finite n)

For all n ∈ N,

ℓ(n) ≥

⌈
2n

log2

(
1
2πe (n+ 1

3)
)⌉.
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Combinatorial Upper bound (Lindenström ’65)

Let n = k2k−1 for k ∈ N. Then, there exists a distinguishing family of
2k − 1 subsets of [n].
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Combinatorial Upper bound (Lindenström ’65)

Let n = k2k−1 for k ∈ N. Then, there exists a distinguishing family of
2k − 1 subsets of [n].

For fixed n ∈ N, let k0 ∈ N be the smallest integer satisfying n ≤ k02
k0−1. Then,

ℓ(n) ≤ 2k0 − 1. Calculating the smallest such k0 = k0(n) ∈ N gives

k0 =

⌈
W0(2n ln 2)

ln 2

⌉
,

where W0 : [− 1
e ,∞) → [−1,∞) is the principal branch of the Lambert W

function (and x = W0(u) is the solution of the equation xex = u for all u > 0,

which is unique and positive).
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Combinatorial Upper bound (Lindenström ’65)

Let n = k2k−1 for k ∈ N. Then, there exists a distinguishing family of
2k − 1 subsets of [n].

For fixed n ∈ N, let k0 ∈ N be the smallest integer satisfying n ≤ k02
k0−1. Then,

ℓ(n) ≤ 2k0 − 1. Calculating the smallest such k0 = k0(n) ∈ N gives

k0 =

⌈
W0(2n ln 2)

ln 2

⌉
,

where W0 : [− 1
e ,∞) → [−1,∞) is the principal branch of the Lambert W

function (and x = W0(u) is the solution of the equation xex = u for all u > 0,

which is unique and positive).

Combinatorial Upper Bound (Explicit for Finite n)

For all n ∈ N,

ℓ(n) ≤ exp

(
ln 2

⌈
W0(2n ln 2)

ln 2

⌉)
− 1.
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Bounds on W0(x)

For all x ≥ e,

x

lnx
· exp

(
1

2

ln lnx

lnx

)
≤ exp

(
W0(x)

)
≤ x

lnx
· exp

(
e

e− 1

ln lnx

lnx

)
,

which yields the asymptotic upper bound

ℓ(n) ≤ 2n

log2 n

(
1 +O

( log logn
log n

))
.
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Shearer’s Lemma
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Shearer’s Lemma at a High-Level

At a high level, Shearer’s Lemma can be regarded as a combinatorial
counterpart to the Loomis-Whitney inequality in geometry.
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At a high level, Shearer’s Lemma can be regarded as a combinatorial
counterpart to the Loomis-Whitney inequality in geometry.

In a specialized form of Shearer’s Lemma, we consider sets within a finite
universe, discussing cardinalities rather than volumes and areas.
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Shearer’s Lemma at a High-Level

At a high level, Shearer’s Lemma can be regarded as a combinatorial
counterpart to the Loomis-Whitney inequality in geometry.

In a specialized form of Shearer’s Lemma, we consider sets within a finite
universe, discussing cardinalities rather than volumes and areas.

Origin of Shearer’s lemma:

▶ Shearer’s Lemma was initially developed as an information-theoretic
tool to upper bound the size of any family of triangle-intersecting
graphs of a given order (1986).

▶ It marked the first significant progress toward resolving a conjecture
proposed by Simonovits and Sós (1976).

▶ That conjecture was proven, in a rather involved manner, using a
combinatorial approach by Ellis, Filmus, and Friedgut (2012).
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Shearer’s Lemma at a High-Level

At a high level, Shearer’s Lemma can be regarded as a combinatorial
counterpart to the Loomis-Whitney inequality in geometry.

In a specialized form of Shearer’s Lemma, we consider sets within a finite
universe, discussing cardinalities rather than volumes and areas.

Origin of Shearer’s lemma:

▶ Shearer’s Lemma was initially developed as an information-theoretic
tool to upper bound the size of any family of triangle-intersecting
graphs of a given order (1986).

▶ It marked the first significant progress toward resolving a conjecture
proposed by Simonovits and Sós (1976).

▶ That conjecture was proven, in a rather involved manner, using a
combinatorial approach by Ellis, Filmus, and Friedgut (2012).

Shearer inequalities have found extensive applications across various fields,
including finite geometry, graph theory, Boolean functions analysis, and
large-deviations analysis.
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Shearer’s Lemma

Shearer’s lemma extends the subadditivity property of Shannon entropy.

Proposition 3.1 (Shearer’s Lemma)

Let

n,m, k ∈ N,
X1, . . . , Xn be discrete random variables,

[n] ≜ {1, . . . , n},
S1, . . . ,Sm ⊆ [n] be subsets such that each element i ∈ [n] belongs
to at least k ≥ 1 of these subsets.

Xn ≜ (X1, . . . , Xn), and XSj ≜ (Xi)i∈Sj for all j ∈ [m].

Then,

kH(Xn) ≤
m∑
j=1

H(XSj ). (3.1)
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Proof of Shearer’s Lemma (Proposition 3.1)

By assumption, d(i) ≥ k for all i ∈ [n], where

d(i) ≜
∣∣{j ∈ [m] : i ∈ Sj

}∣∣. (3.2)

Let S = {i1, . . . , iℓ}, 1 ≤ i1 < . . . < iℓ ≤ n =⇒ |S| = ℓ, S ⊆ [n].

Let XS ≜ (Xi1 , . . . , Xiℓ).

By the chain rule and the fact that conditioning reduces entropy,

H(XS) = H(Xi1) + H(Xi2 |Xi1) + . . .+H(Xiℓ |Xi1 , . . . , Xiℓ−1
)

≥
∑
i∈S

H(Xi|X1, . . . , Xi−1)

=

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}
. (3.3)
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Proof of Shearer’s Lemma (Cont.)

m∑
j=1

H(XSj ) ≥
m∑
j=1

n∑
i=1

{
1{i ∈ Sj} H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

{
m∑
j=1

1{i ∈ Sj} H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

{
d(i) H(Xi|X1, . . . , Xi−1)

}
≥ k

n∑
i=1

H(Xi|X1, . . . , Xi−1) (3.4)

= k H(Xn),

where inequality (3.4) holds due to the nonnegativity of the conditional
entropies of discrete random variables, and under the assumption that
d(i) ≥ k for all i ∈ [n].
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Special case: Subadditivity of the Shannon entropy

Let n = m with n ∈ N, and Si = {i} (singletons) for all i ∈ [n]
⇒ every element i ∈ [n] belongs to a single set among S1, . . . ,Sn

(i.e., k = 1). By Shearer’s Lemma, it follows that

H(Xn) ≤
n∑

j=1

H(Xj),

which is the subadditivity property of the Shannon entropy for discrete
random variables.
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Special case: Subadditivity of the Shannon entropy

Let n = m with n ∈ N, and Si = {i} (singletons) for all i ∈ [n]
⇒ every element i ∈ [n] belongs to a single set among S1, . . . ,Sn

(i.e., k = 1). By Shearer’s Lemma, it follows that

H(Xn) ≤
n∑

j=1

H(Xj),

which is the subadditivity property of the Shannon entropy for discrete
random variables.

If every element i ∈ [n] belongs to exactly k of the subsets Sj (j ∈ [m]),
then Shearer’s lemma also applies to continuous random variables
X1, . . . , Xn, with entropy replaced by the differential entropy. Hence,
Shearer’s lemma yields the subadditivity property of the Shannon entropy
for discrete and continuous random variables.
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Special case: Han’s Inequality

For all ℓ ∈ [n], let Sℓ = [n] \ {ℓ}. By Shearer’s Lemma (Proposition 3.1)
applied to these n subsets of [n], since every element i ∈ [n] is contained
in exactly k = n− 1 of these subsets,

(n− 1)H(Xn) ≤
n∑

ℓ=1

H(X1, . . . , Xℓ−1, Xℓ+1, . . . , Xn) ≤ nH(Xn). (3.5)

An equivalent form of (3.5) is given by

0 ≤
n∑

ℓ=1

{
H(Xn)−H(X1, . . . , Xℓ−1, Xℓ+1, . . . , Xn)

}
≤ H(Xn). (3.6)

The equivalent forms in (3.5) and (3.6) are known as Han’s inequality.
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Proposition 3.2 (Shearer’s Lemma: Probabilistic Version)

Let Xn be a discrete n-dimensional random vector, and let S ⊆ [n] be a
random subset of [n], independent of Xn, with an arbitrary probability
mass function PS . If there exists θ > 0 such that

Pr[i ∈ S] ≥ θ, ∀ i ∈ [n], (3.7)

then,

ES
[
H(XS)

]
≥ θH(Xn). (3.8)
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Proof of Proposition 3.2

By inequality (3.3), for any set S ⊆ [n],

H(XS) ≥
n∑

i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}
.
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Proof of Proposition 3.2 (cont.)

=⇒ ES
[
H(XS)

]
=
∑
S ⊆[n]

PS(S) H(XS)

≥
∑
S ⊆[n]

{
PS(S)

n∑
i=1

{
1{i ∈ S} H(Xi|X1, . . . , Xi−1)

}}

=

n∑
i=1

{ ∑
S ⊆[n]

{
PS(S) 1{i ∈ S}

}
H(Xi|X1, . . . , Xi−1)

}

=

n∑
i=1

Pr[i ∈ S] H(Xi|X1, . . . , Xi−1)

≥ θ

n∑
i=1

H(Xi|X1, . . . , Xi−1) (3.9)

= θH(Xn).
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Proposition 3.3 (Combinatorial Shearer’s Lemma)

Let F be a finite multiset of subsets of [n] (possibly with repeats),
where each element i ∈ [n] is included in at least k ≥ 1 sets of F .

Let M be a set of subsets of [n].

For every set S ∈ F , let the trace of M on S, denoted traceS(M ),
be the set of all possible intersections of elements of M with S, i.e.,

traceS(M ) ≜
{
A ∩ S : A ∈ M

}
, ∀S ∈ F . (3.10)

Then,

|M | ≤
∏
S∈F

∣∣traceS(M )
∣∣ 1k . (3.11)
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Proof of Proposition 3.3

Let X ⊆ [n] be a set that is selected uniformly at random from M .

Represent X by the random vector Xn = (X1, . . . , Xn), where Xi

(for all i ∈ [n]) denotes the indicator function of the event {i ∈ X}.
For every S ∈ F , let XS = (Xi)i∈S . Then,

H(XS) ≤ log
∣∣traceS(M )

∣∣. (3.12)

Applying Shearer’s lemma (Proposition 3.1) gives

k H(Xn) ≤
∑
S∈F

log
∣∣traceS(M )

∣∣. (3.13)

H(Xn) = log |M | since Xn is in one-to-one correspondence with X ,
which is a set selected uniformly at random from M . Hence,

log |M | ≤ 1

k

∑
S∈F

log
∣∣traceS(M )

∣∣, (3.14)

and exponentiation of both sides of (3.14) gives (3.11).
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Shearer’s Lemma in Finite Geometry
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A Geometric Application of Shearer’s Lemma

Example 4.1

Let P ⊆ R3 be a set of points that has at most r distinct projections on
each of the XY , XZ and Y Z planes. How large can this set be ?
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A Geometric Application of Shearer’s Lemma

Example 4.1

Let P ⊆ R3 be a set of points that has at most r distinct projections on
each of the XY , XZ and Y Z planes. How large can this set be ?

As we shall see in the next slide,

|P| ≤ r
3
2 .

Furthermore, that bound on the cardinality of the set P is achieved by a
grid of

√
r ×

√
r ×

√
r points, provided that r is a square of an integer.
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Example 4.1 (cont.)

By Shearer’s lemma,

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y, Z). (4.1)

Let (X,Y, Z) ∈ P be selected uniformly at random in P. Then,

H(X,Y, Z) = log |P|. (4.2)

By assumption, the set P has at most r distinct projections on each
of the XY,XZ, and Y Z planes. Hence,

H(X,Y ) ≤ log r, H(X,Z) ≤ log r, H(Y,Z) ≤ log r. (4.3)

Combining (4.1)–(4.3) gives

2 log |P| ≤ 3 log r, (4.4)

and then exponentiating both sides of (4.4) gives |P| ≤ r
3
2 .
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Generalization of Example 4.1

Let P ⊆ Rn be a finite set with |P| = M .

Let k ∈ [n− 1].

Let S1, . . . ,Sℓ be all the k-element subsets of [n], where ℓ =
(
n
k

)
. Then,

every element i ∈ [n] belongs to exactly
(
n−1
k−1

)
of these subsets.

By applying Shearer’s lemma, it follows that(
n− 1

k − 1

)
H(Xn) ≤

ℓ∑
j=1

H(XSj
). (4.5)

Let Xn ∈ P be a point that is selected uniformly at random in P. Then,

H(Xn) = logM. (4.6)

Let Mj be the number of distinct projections of P on the k-dimensional
subspace of Rn whose coordinates are the elements of the set Sj . Then,

H(XSj ) ≤ logMj , j ∈ [ℓ]. (4.7)
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Generalization of Example 4.1 (cont.)

Combining (4.5)–(4.7) gives(
n− 1

k − 1

)
logM ≤

ℓ∑
j=1

logMj . (4.8)

Let

R ≜
logM

n
, Rj ≜

logMj

k
, ∀ j ∈ [ℓ]. (4.9)

Combining (4.8), (4.9), and the identity n
k

(
n−1
k−1

)
=
(
n
k

)
= ℓ, gives

R ≤ 1

ℓ

ℓ∑
j=1

Rj , (4.10)

and if k
√

Mj ∈ N, for all j ∈ [ℓ], then (4.10) holds with equality for P that
is an n-dimensional grid of points.

Setting n = 3, k = 2, and Mj = r for j ∈ {1, 2, 3}, gives Example 4.1.
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Extremal Combinatorics: Intersecting Families of Graphs
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Definition 5.1 (Triangle-Intersecting Families of Graphs)

Let G be a family of graphs on the vertex set [n], with the property that
for every G1,G2 ∈ G, the intersection G1 ∩ G2 contains a triangle (i.e,
there are three vertices i, j, k ∈ [n] such that each of {i, j}, {i, k}, {j, k}
is in the edge sets of both G1 and G2). The family G is referred to as a
triangle-interesting family of graphs on n vertices.
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Definition 5.1 (Triangle-Intersecting Families of Graphs)

Let G be a family of graphs on the vertex set [n], with the property that
for every G1,G2 ∈ G, the intersection G1 ∩ G2 contains a triangle (i.e,
there are three vertices i, j, k ∈ [n] such that each of {i, j}, {i, k}, {j, k}
is in the edge sets of both G1 and G2). The family G is referred to as a
triangle-interesting family of graphs on n vertices.

Question (Simonovits and Sós, 1976)

How large can G (a family of triangle-intersecting graphs) be ?
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Lower Bound on Largest Size

|G| can be as large as 2(
n
2)−3.

Proof.

Consider the family G of all graphs on n vertices that include a particular
triangle.
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Lower Bound on Largest Size

|G| can be as large as 2(
n
2)−3.

Proof.

Consider the family G of all graphs on n vertices that include a particular
triangle.

Upper Bound on Largest Size

|G| cannot exceed 2(
n
2)−1.

Proof.

A family of distinct subsets of a set of size m, where any two of these
subsets have a non-empty intersection, can have a cardinality of at most
2m−1 (A and A cannot be members of this family). The edge sets of the
graphs in G satisfy this property, with m =

(
n
2

)
.
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Proposition 5.1 (Ellis, Filmus and Friedgut (2012))

The size of a family G of triangle-intersecting graphs on n vertices satisfies

|G| ≤ 2(
n
2)−3.

This result was proved by using discrete Fourier analysis to obtain the

sharp bound |G| ≤ 2(
n
2)−3, as conjectured by Simonovits and Sós.
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Proposition 5.1 (Ellis, Filmus and Friedgut (2012))

The size of a family G of triangle-intersecting graphs on n vertices satisfies

|G| ≤ 2(
n
2)−3.

This result was proved by using discrete Fourier analysis to obtain the

sharp bound |G| ≤ 2(
n
2)−3, as conjectured by Simonovits and Sós.

The first significant progress towards proving the Simonovits–Sós
conjecture came from an information-theoretic approach by Chung,
Graham, Frankl, and Shearer in 1986.

Using the combinatorial Shearer lemma (Proposition 3.3), they
derived a simple and elegant upper bound on the size of G.
Their bound was given as 2(

n
2)−2, falling short of the Simonovits–Sós

conjecture by a factor of 2.
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Triangle-Intersecting Families of Graphs (cont.)

Proposition 5.2 (Chung, Graham, Frankl, and Shearer, 1986)

Let G be a family of K3-intersecting graphs on a common vertex set [n].

Then, |G| ≤ 2(
n
2)−2.
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Proof of Proposition 5.2

Identify G ∈ G with its edge set E(G), and let M =
{
E(G) : G ∈ G

}
.

Let U = E(Kn). For every G ∈ G, we have E(G) ⊆ U , and |U| =
(
n
2

)
.

For every unordered equipartition A ∪ B = [n], which satisfies∣∣|A| − |B|
∣∣ ≤ 1, let U(A,B) be the subset of U consisting of all

those edges that lie entirely inside A or entirely inside B.
We apply Proposition 3.3 with F = {U(A,B)} with A,B as above.

Let m = |U(A,B)|, which is independent of the equipartition since

m =

{
2
(
n/2
2

)
if n is even,(⌊n/2⌋

2

)
+
(⌈n/2⌉

2

)
if n is odd.

=⇒ m ≤ 1

2

(
n

2

)
. (5.1)

By a simple double-counting argument, if k is the number of elements
of F in which each element of U occurs, then

m |F | =
(
n

2

)
k. (5.2)

I. Sason, Technion, Israel Hebrew University of Jerusalem December 16, 2024 40 / 64



Proof of Proposition 5.2 (cont.)

Let S ∈ F .

Observe that traceS(M ) forms an intersecting family of subsets of S;
indeed, for any G,G′ ∈ G, G ∩ G′ has a triangle T = K3, and since the
complement of S (in U) is triangle-free (viewed as a graph on [n]), at
least one of the edges of T belongs to S. So, since |S| = m, we have

|traceS(M )| ≤ 2m−1.

By Proposition 3.3 (and 1-to-1 correspondence between G and M ),

|G| = |M |

≤
(
2m−1

) |F|
k (5.3)

= 2(
n
2)(1−

1
m) (5.4)

≤ 2(
n
2)−2, (5.5)

where (5.4) relies on (5.2), and (5.5) holds due to (5.1).
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Intersecting Families of Graphs (cont.)

Definition 5.2 (H-intersecting Families of Graphs)

Let G be a family of graphs on a common vertex set. Then, it is said that
G is H-intersecting if for every two graphs G1,G2 ∈ G, the graph G1 ∩ G2

contains H as a subgraph.
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Intersecting Families of Graphs (cont.)

Definition 5.2 (H-intersecting Families of Graphs)

Let G be a family of graphs on a common vertex set. Then, it is said that
G is H-intersecting if for every two graphs G1,G2 ∈ G, the graph G1 ∩ G2

contains H as a subgraph.

Example 5.3

Let H = Kt with t ≥ 2. Then,

t = 2 means that G is intersecting,

t = 3 means that G is triangle-intersecting.
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Intersecting Families of Graphs (cont.)

Definition 5.2 (H-intersecting Families of Graphs)

Let G be a family of graphs on a common vertex set. Then, it is said that
G is H-intersecting if for every two graphs G1,G2 ∈ G, the graph G1 ∩ G2

contains H as a subgraph.

Example 5.3

Let H = Kt with t ≥ 2. Then,

t = 2 means that G is intersecting,

t = 3 means that G is triangle-intersecting.

Problem in Extremal Combinatorics

Given H and n, determine the maximum size of an H-intersecting family of
graphs on n labeled vertices.

I. Sason, Technion, Israel Hebrew University of Jerusalem December 16, 2024 42 / 64



Intersecting Families of Graphs (cont.)

Generalized Conjecture (Ellis, Filmus, and Friedgut, 2012)

Every Kt-intersecting family of graphs on a common vertex set [n] has size

at most 2(
n
2)−(

t
2), with equality for the family of all graphs containing a

fixed clique on t vertices.
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Intersecting Families of Graphs (cont.)

Generalized Conjecture (Ellis, Filmus, and Friedgut, 2012)

Every Kt-intersecting family of graphs on a common vertex set [n] has size

at most 2(
n
2)−(

t
2), with equality for the family of all graphs containing a

fixed clique on t vertices.

For t = 2, it is trivial (since K2 is an edge).

For t = 3, it was proved by Ellis, Filmus & Friedgut (’12).

For t = 4, it was recently proved by Berger and Zhao (2023).

For t ≥ 5, this problem is left open.
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Shearer’s Lemma and Cliques in Graphs
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All graphs here are assumed to be finite, simple, and undirected.

Application of Proposition 3.2 to Graph Theory

Proposition 6.1

Let G be a simple graph on n vertices, and let mℓ be the number of
cliques of order ℓ ∈ N in G. Then, for all s, t ∈ N with 2 ≤ s < t ≤ n,

(t!mt)
s ≤ (s!ms)

t. (6.1)
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Proof of Proposition 6.1

Label the vertices in G by the elements of [n], and let 2 ≤ s < t ≤ n.

Select a clique of order t in G uniformly at random, and then select
the order of the vertices within that copy uniformly at random. This
results in a random vector (X1, . . . , Xt), reflecting the chosen order
of the vertices.

Let mt be the number of cliques of order t in G. Then,

H(X1, . . . , Xt) = log(t!mt), (6.2)

since the order of the vertices of a clique of order t in G can be
selected in t! equiprobable ways according to their order of selection.

Let S be a uniformly selected subset of size s from [t]. Then,

Pr[i ∈ S] = s

t
, ∀ i ∈ [t]. (6.3)

By Proposition 3.2, it follows from (6.2) and (6.3) that

ES
[
H(XS)

]
≥ s log(t!mt)

t
. (6.4)
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Proof of Proposition 6.1 (cont.)

=⇒ ∃ S ′ ⊂ [t] with |S ′| = s, satisfying

H(XS′) ≥ s log(t!mt)

t
. (6.5)

The random subvector XS′ is supported on a clique of order s in G
(an induced subgraph of a clique is also a clique), so

H(XS′) ≤ log(s!ms), (6.6)

since there are ms cliques of order s in G, and the order of the
vertices in a clique of order s can be selected in s! ways.

Combining (6.5) and (6.6) yields

log(s!ms) ≥
s log(t!mt)

t
, (6.7)

which by exponentiating both sides of (6.7) gives (6.1).
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Example 6.1

Let G be a simple graph on n vertices with e(G) edges and t(G) triangles.
Substituting s = 2 and t = 3 into (6.1), with m2 = e(G) and m3 = t(G),
gives (

6 t(G))2 ≤ (2 e(G))3, (6.8)

which can be also derived by using spectral graph theory. Let A be the
adjacency matrix of G, with spectrum {λj}nj=1, and λ = (λ1, . . . , λn).
Then,

n∑
j=1

λ2
j = Tr(A2) = 2 e(G),

n∑
j=1

λ3
j = Tr(A3) = 6 t(G), (6.9)

(6 t(G))2 =

(
n∑

j=1

λ3
j

)2

≤ ∥λ∥63 ≤ ∥λ∥62 =

(
n∑

j=1

λ2
j

)3

= (2 e(G))3, (6.10)

where the second inequality in (6.10) holds since the norm ∥ · ∥p is
monotonically decreasing in p ≥ 1.
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A Generalization of Shearer’s Lemma
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A Generalized Version of Shearer’s Lemma

We next provide a generalized version of Shearer’s Lemma. To that end,
let Ω be a finite and non-empty set, and let f : 2Ω → R be a real-valued
set function (i.e., f is defined for all subsets of Ω).

Definition 7.1 (Sub/Supermodular function)

The set function f : 2Ω → R is submodular if

f(T ) + f(S) ≥ f(T ∪ S) + f(T ∩ S), ∀ S, T ⊆ Ω (7.1)

Likewise, f is supermodular if −f is submodular.
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Equivalent Condition for Submodularity

An identical characterization of submodularity is the diminishing return
property, which is stated as follows.

Proposition 7.1

A set function f : 2Ω → R is submodular if and only if whenever

S ⊂ T ⊂ Ω, ω ∈ T c =⇒ f(S ∪ {ω})− f(S) ≥ f(T ∪ {ω})− f(T ). (7.2)
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Equivalent Condition for Submodularity

An identical characterization of submodularity is the diminishing return
property, which is stated as follows.

Proposition 7.1

A set function f : 2Ω → R is submodular if and only if whenever

S ⊂ T ⊂ Ω, ω ∈ T c =⇒ f(S ∪ {ω})− f(S) ≥ f(T ∪ {ω})− f(T ). (7.2)

The equivalent condition for the submodularity of f in (7.2) means that
the larger is the set, the smaller is the increase in f when a new element is
added.
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Definition 7.2 (Monotonic set function)

The set function f : 2Ω → R is monotonically increasing if

S ⊆ T ⊆ Ω =⇒ f(S) ≤ f(T ). (7.3)

Likewise, f is monotonically decreasing if −f is monotonically increasing.
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Definition 7.2 (Monotonic set function)

The set function f : 2Ω → R is monotonically increasing if

S ⊆ T ⊆ Ω =⇒ f(S) ≤ f(T ). (7.3)

Likewise, f is monotonically decreasing if −f is monotonically increasing.

Definition 7.3 (Polymatroid, ground set and rank function)

Let f : 2Ω → R be submodular and monotonically increasing set function
with f(∅) = 0. The pair (Ω, f) is called a polymatroid, Ω is called a
ground set, and f is called a rank function.
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Proposition 7.2 (Two Information-Theoretic Set Functions)

Let Ω be a finite and non-empty set, and let {Xω}ω∈Ω be a collection of
discrete random variables. Then, the following holds:

1 The set function f : 2Ω → R, given by

f(T ) ≜ H(XT ), T ⊆ Ω, (7.4)

is a rank function.

2 The set function f : 2Ω → R, given by

f(T ) ≜ H(XT |XT c), T ⊆ Ω, (7.5)

is supermodular, monotonically increasing, and f(∅) = 0.

There are more sub/supermodular information-theoretic set functions.
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Proof.

We prove Item 1, in regard to the entropy as a set function f : 2Ω → R,
given in (7.4). It is clear that f(∅) = 0, and also f is monotonically
increasing. The submodularity of f is next verified. Let S ⊂ T ⊂ Ω and
ω ∈ T c ≜ Ω \ T . Then,

f(T ∪ {ω})− f(T ) = H(XT ∪{ω})−H(XT )

= H(Xω|XT )

= H(Xω|XS , XT \S)

≤ H(Xω|XS) (7.6)

= H(XS∪{ω})−H(XS)

= f(S ∪ {ω})− f(S),

which asserts the submodularity of f =⇒ f is a rank function.
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Proposition 7.3 (I.S., 2022)

Let Ω be a finite set with |Ω| = n. Let f : 2Ω → R with f(∅) = 0, and

g : R → R. Let the sequence
{
t
(n)
k

}n
k=1

be given by

t
(n)
k ≜

1(
n
k

) ∑
T ⊆Ω: |T |=k

g

(
f(T )

k

)
, k ∈ [n]. (7.7)

If f is submodular, and g is monotonically increasing and convex,

then the sequence
{
t
(n)
k

}n
k=1

is monotonically decreasing, i.e.,

t
(n)
1 ≥ t

(n)
2 ≥ . . . ≥ t(n)n = g

(
f(Ω)

n

)
. (7.8)

In particular,∑
T ⊆Ω: |T |=k

g

(
f(T )

k

)
≥
(
n

k

)
g

(
f(Ω)

n

)
, k ∈ [n]. (7.9)
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Proposition 7.3 (cont.)

If f is submodular, and g is monotonically decreasing and concave,

then the sequence
{
t
(n)
k

}n
k=1

is monotonically increasing.

If f is supermodular, and g is monotonically increasing and concave,

then the sequence
{
t
(n)
k

}n
k=1

is monotonically increasing.

If f is supermodular, and g is monotonically decreasing and convex,

then the sequence
{
t
(n)
k

}n
k=1

is monotonically decreasing.

I. Sason, “Information inequalities via submodularity, and a problem in
extremal graph theory,” Entropy, vol. 24, paper 597, pp. 1–31, April 2022.
https://doi.org/10.3390/e24050597
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Corollary 7.4

Let Ω be a finite set with |Ω| = n, f : 2Ω → R, and g : R → R be convex
and monotonically increasing. If

f is a rank function,

g(0) > 0 or there is ℓ ∈ N such that g(0) = . . . = g(ℓ−1)(0) = 0 with
g(ℓ)(0) > 0,

{kn}∞n=1 is a sequence such that kn ∈ [n], ∀n ∈ N, with kn −→
n→∞

∞,

then

lim
n→∞

{
1

n
log

( ∑
T ⊆Ω: |T |=kn

g

(
f(T )

kn

))
− Hb

(
kn
n

)}
= 0. (7.10)

Furthermore, if lim
n→∞

kn
n = β ∈ [0, 1], then

lim
n→∞

1

n
log

( ∑
T ⊆Ω: |T |=kn

g

(
f(T )

kn

))
= Hb(β). (7.11)
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Corollary 7.5

Let Ω be a finite set with |Ω| = n, and f : 2Ω → R be submodular and
nonnegative with f(∅) = 0. Then,

For α ≥ 1 and k ∈ [n− 1]∑
T ⊆Ω: |T |=k

(
fα(Ω)− fα(T )

)
≤ cα(n, k) f

α(Ω), (7.12)

with

cα(n, k) ≜

(
1− kα

nα

)(
n

k

)
. (7.13)

For α = 1, (7.12) holds with c1(n, k) =
(
n−1
k

)
regardless of the

nonnegativity of f .

If f is a rank function, then for α ≥ 1 and k ∈ [n](k
n

)α−1
(
n− 1

k − 1

)
fα(Ω) ≤

∑
T ⊆Ω: |T |=k

fα(T ) ≤
(
n

k

)
fα(Ω). (7.14)
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Specialization of Corollary 7.5 to a generalized Han’s inequality

Substituting α = 1 and the entropy-set function of (7.4) into (7.12)
gives that, for all k ∈ [n− 1],∑
1≤i1<...<ik≤n

{
H(Xn)−H(Xi1 , . . . , Xik)

}
≤
(
n− 1

k

)
H(Xn), (7.15)

which is Fujishige’s inequality (1978).

Consequently, setting k = n− 1 in (7.15) gives
n∑

i=1

{
H(Xn)−H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

}
≤ H(Xn), (7.16)

which specialized to Han’s inequality.

I. Sason, “Information inequalities via submodularity, and a problem in
extremal graph theory,” Entropy, vol. 24, paper 597, pp. 1–31, April 2022.
https://doi.org/10.3390/e24050597
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Proposition 7.4 (Generalized Version of Shearer’s Lemma)

Let Ω be a finite set, let {Sj}Mj=1 be a finite collection of subsets of Ω

(with M ∈ N), and let f : 2Ω → R be a set function.

1 If f is non-negative and submodular, and every element in Ω is
included in at least d ≥ 1 of the subsets {Sj}Mj=1, then

M∑
j=1

f(Sj) ≥ d f(Ω). (7.17)

2 If f is a rank function, A ⊂ Ω, and every element in A is included in
at least d ≥ 1 of the subsets {Sj}Mj=1, then

M∑
j=1

f(Sj) ≥ d f(A). (7.18)
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Proposition 7.4 =⇒ Sherarer’s Lemma in Proposition 3.1

Item 1 of Proposition 7.4 yields Sherarer’s Lemma in Proposition 3.1 since
the set function given in (7.4) is submodular, and it is also nonnegative for
discrete random variables (in light of Item 1 of Proposition 7.2).
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Summary
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Summary

Entropy, counting, and coins weighing.

Shearer’s inequalities.

Applications:
▶ Finite Geometry.
▶ Graph theory.

⋆ cliques, and triangle-intersecting families of graphs,
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Applications:
▶ Finite Geometry.
▶ Graph theory.

⋆ cliques, and triangle-intersecting families of graphs,

▶ Not covered in this talk:
⋆ Probabilistic results in graph theory.
⋆ Version of Shearer’s lemma for the relative entropy.
⋆ Read-k Boolean functions and Chernoff-like bounds for their sums.
⋆ Counting independent sets in graphs.
⋆ Counting graph homomorphisms.

Generalizations of Shearer’s and Han’s inequalities:
▶ Some Generalizations (I.S., 2022).
▶ Not covered in this talk:

⋆ Shearer’s lemma on hypergraphs.
⋆ Information-theoretic generalizations and counterparts.
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